A hierarchic approach based on swarm intelligence to solve the traveling salesman problem

نویسندگان

  • Mesut GÜNDÜZ
  • Mustafa Servet KIRAN
  • Eren ÖZCEYLAN
چکیده

The purpose of this paper is to present a new hierarchic method based on swarm intelligence algorithms for solving the well-known traveling salesman problem. The swarm intelligence algorithms implemented in this study are divided into 2 types: path construction-based and path improvement-based methods. The path construction-based method (ant colony optimization (ACO)) produces good solutions but takes more time to achieve a good solution, while the path improvement-based technique (artificial bee colony (ABC)) quickly produces results but does not achieve a good solution in a reasonable time. Therefore, a new hierarchic method, which consists of both ACO and ABC, is proposed to achieve a good solution in a reasonable time. ACO is used to provide a better initial solution for the ABC, which uses the path improvement technique in order to achieve an optimal or near optimal solution. Computational experiments are conducted on 10 instances of well-known data sets available in the literature. The results show that ACO-ABC produces better quality solutions than individual approaches of ACO and ABC with better central processing unit time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over

Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...

متن کامل

An Approach for Solving Traveling Salesman Problem

In this paper, we introduce a new approach for solving the traveling salesman problems (TSP) and provide a solution algorithm for a variant of this problem. The concept of the proposed method is based on the Hungarian algorithm, which has been used to solve an assignment problem for reaching an optimal solution. We introduced a new fittest criterion for crossing over such problems, and illu...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Studying Solutions of Traveling Salesman Problem with Hybrid Particle Swarm Optimization

This paper presents the application of the PSO (Particle Swarm Optimization) as a tool to solve the Traveling Salesman Problem. The proposed application consists of using a technique based on Artificial Intelligent – AI. It is based in the simulation of social interaction between individuals of a population. Here, each element of population moves in the hyper-space and they are attracted by pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015